

Exploring Behavioural and Physiological Responses of Children to Micro-mobility Travel in a Multi-modal Virtual Reality Setup

Department of Landscape, Water and Infrastructure, Institute of Transport Studies

Authors: Shun Su, Juliane Stark, Yusak Susilo, Valerie Batiajew

Workshop A5: "Virtual Journeys, Real Decisions: Methodological Frontiers in XR-Enhanced Travel Behaviour Research"

13th International Conference on Transport Survey Methods, March 30th - 4th April, 2025, Da Nang, Vietnam

Research focus

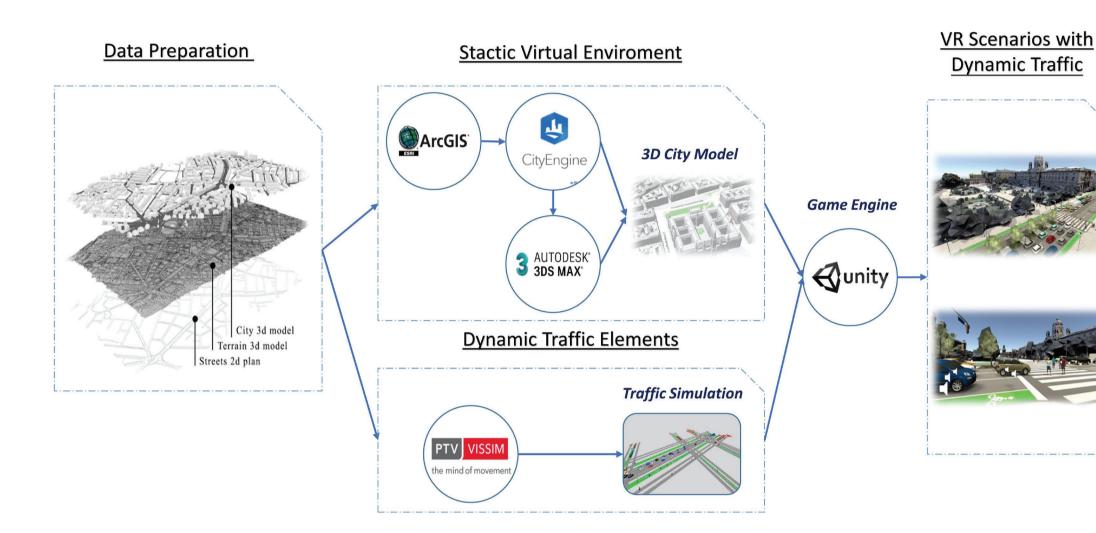
- Compare physiological stress levels in children using e-scooters versus bicycles within a controlled VR-simulated urban commuting environment.
- Evaluate the impacts of environmental, behavioural, and sociodemographic variables on physiological stress responses.
- Examine interactive effects among those factors to

Objectives

- Develop a Multi-modal VR Framework: Create an advanced VRbased experimental setup integrating physiological sensors, simulators, and surveys to study children's interactions with micromobility tools.
- Mode-Specific Stress Profiling: Quantify the differences in physiological stress responses between bicycle and e-scooter travel.
- Address Methodological Challenges: Identify and propose solutions

Participants

- Eligible participants: children who have normal or corrected-to-normal vision and no acute or chronic physical or mental health conditions.
- Sample: 17 children (9 females, 8 males) aged 13 to 15 years (M = 13.6, SD = 0.62) from 3 secondary schools in Austria.
- Data collection: 10th -25th April 2024.

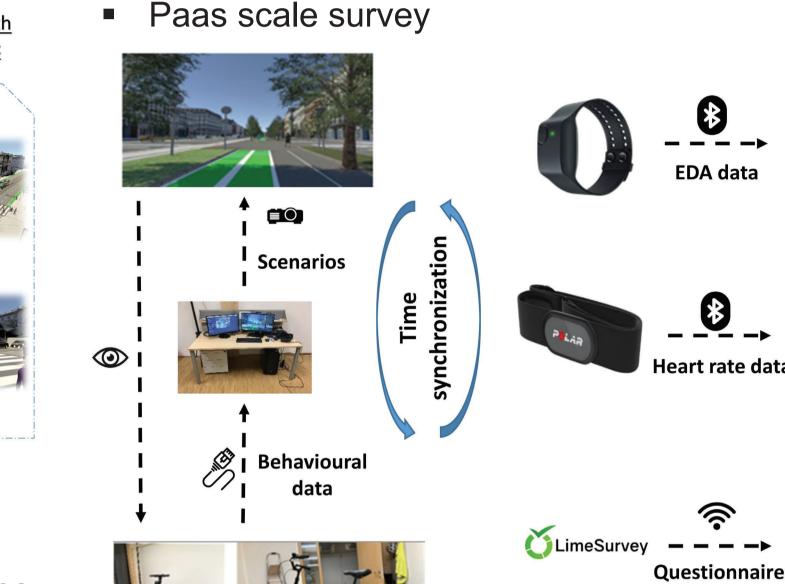

uncover compounded stressors in micro-mobility usage.

for limitations in VR-based data collection and future behavioural studies involving children.

Experimental design

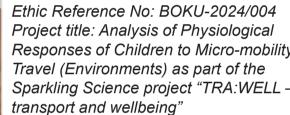
Virtual Reality (VR) environment

"Schottenring" street (1st district) in Vienna city with dynamic traffic



Within-subject approach

- Riding both bike and e-scooter simulators on shared bike lane
- Complete a 1.6 km round trip, interacting with other road users


Framework of the measuring system

Physiological and behavioural measurements

Experiment protocol and implementation

S	Social- demographic and Screening questionnaires from online survey system (10 mins)	No physical movement or speech activity, sit and open their eyes (2 mins)	Familiar with simulators and practice trials (5 mins) Rest (2 mins)	Riding task 1 (7 – 9 mins) Paas scale online questionnaire (2 mins) Rest (2 mins)	Counterbalanced order	Riding task 2 (7 – 9 mins) Paas scale online questionnaire (2 mins) Rest (2 mins)
P LAR	Pre-experiment phase	Baseline measurement	Practice trials		Main tasks	
	Approximate 40 minutes (including equipment set up, instruction, and breaks)					
[⊻= □= •						e No: BOKU-2024/004 alysis of Physiological

Data

Dataset

Model and results

Mixed Effects Models

Traffic mode * Velocity mean effects plot Traffic_Mode = e-Scoote e-Scooter

- 1.2 GB data collected.
- Pre-processing and a late fusion strategy were applied
 - o Dataset with a panel data structure that accommodates multiple participants with multivariate repeated measures.
 - 28,955 records from 17 children.

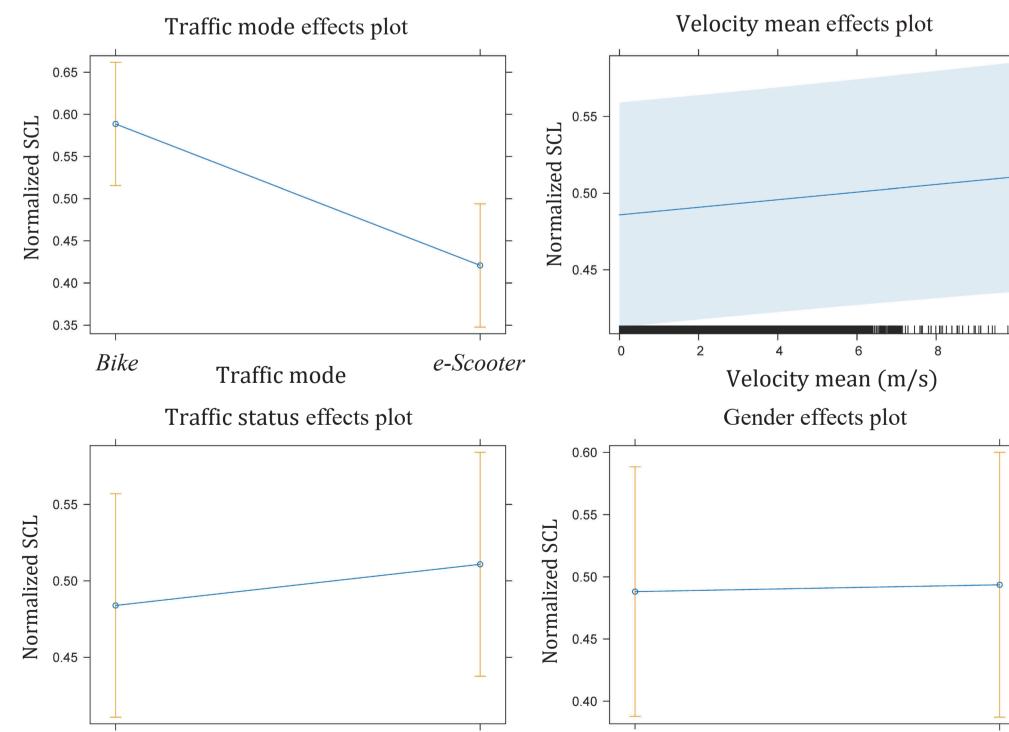
VR enviromental stimuli **Riding behavioral data** Socio-demographic data Physiological data Socio-demographic info \bigcirc Position (x, y, z) Heart-Rate (BMP) fz.1-2 Hz $(\overline{})$ Perceptual data Velocity (m/s) EDA (Skin Conductivity) (μs) fz.4 Hz Perception scale rating Brakes (Input level 0 - 1)

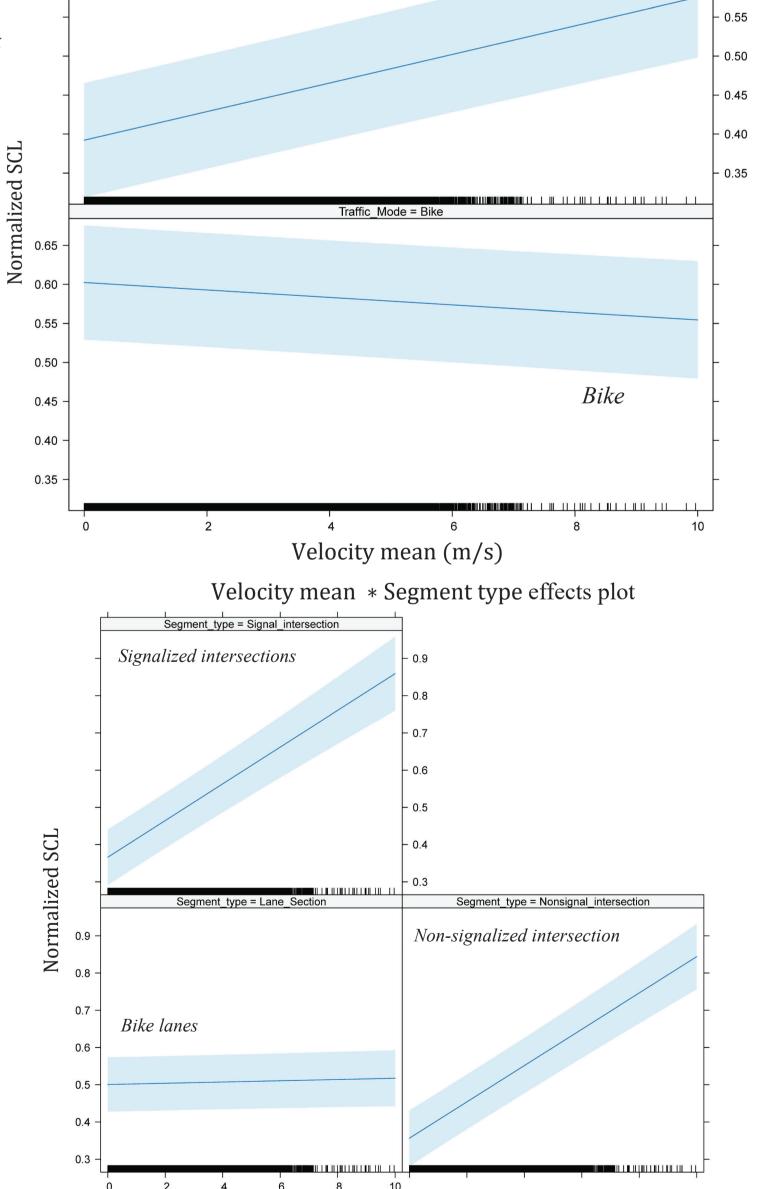
Selected Variables for stress analysis

• tonic EDA, is used as a physiological normalized skin indicator of stress, normalized for each conductance level (SCL) participant, ranging from 0 to 1 • bike or e-Scooter traffic mode • traffic status (with traffic or without traffic) environmental Stimuli segment type (lanes or intersections) gender • male or female • average velocity, measured every 250

velocity mean (m/s)

Normalizd SCL_{it}


 $= \beta_0 + \beta_1 \text{velocity mean}_{it} + \beta_2 \text{segment type}_{it} + \beta_3 \text{traffic_mode}_{it} + \beta_4 \text{gender}_{it}$


data

- + β_5 traffic status_{*it*} + β_{12} velocity mean_{*it*} * segment type_{*it*}
- + β_{13} velocity mean_{*it*} * traffic_mode_{*it*} + β_{14} velocity mean_{*it*} * gender_{*it*}
- + β_{15} velocity mean_{*it*} * traffic status_{*it*} + β_{34} traffic_{mode_{*it*} * gender_{*it*}}
- + β_{45} gender_{*it*} * traffic status_{*it*} + μ_{it} + ϵ_{it}

Where:

- β_0 is the intercept, representing the baseline SCL when all independent variables are zero.
- $\beta_1, \beta_2, \beta_3, \beta_4$ and β_5 are the main effects coefficients, indicating the impact of each variable on Normalizd SCL when other variables are held at zero.
- β_{12} , β_{13} , β_{14} , β_{14} , β_{34} and β_{45} , are coefficients for two-way interaction terms, representing the interactive effects between variables respectively.
- μ_{it} denotes the individual effects and ϵ_{it} is the error term.

Velocity mean (m/s)

milliseconds (4 Hz), ranging from 0 to 9.97 m/s

without traffic Traffic status with traffic

Male Gender

SCL

Discussion

- E-Scooter use was associated with lower physiological stress levels compared to bicycles in children, potentially due to their lower physical exertion requirements.
- Speed-Environment Stress Interaction: Elevated physiological arousal in children at higher speeds within complex environments (e.g., intersections, high-traffic zones) highlights the necessity of targeted speed regulations and safer infrastructure designs.
- Speed-Dependent Stress in E-Scooters: E-scooters induce heightened stress at higher velocities, challenging their perception as low-stress modes and emphasizing the importance of speed moderation.

For more information: see full paper, for survey method: see also Su et al.: "Exploring Behavioural and Physiological Responses of Children to Micro-mobility Travel in a Multi-modal Virtual Reality Setup" (ISCTSC 2025)

Conclusions

Famale

- Contribution: Developed a multi-modal VR framework to analyse children's stress responses to micro-mobility tools, revealing speeddependent arousal dynamics and gender-specific stress patterns.
- Implications: Highlights the need for speed regulation, safer infrastructure, and gender-sensitive policies to optimize urban mobility safety and reduce stress for young commuters.
- Limitations: Constrained by VR realism gaps, small sample size, and reliance on single physiological metric (SCL).
- Future Work: Expand to real-world validation, diverse demographics, and multi-metric analysis to enhance practical relevance.

Contact: Shun Su, Peter-Jordan Str. 82, 1190 Vienna, Austria, shun.su@boku.ac.at